
250 Java Programming for A-level Computer Science

10 Object oriented programming

Java is an object oriented programming language. The use of objects has a number of

important advantages, particularly when developing large and complex software

projects.

 You have already been using objects in each Java NetBeans program you have written, although

you may not have realised this. Each component is an object - for example: buttons, spinners,

tables, text field boxes, and forms themselves.

An easy way to understand object oriented programming is to make an analogy with electronics:

Electronic circuits are made up of Programs are made up of

components: components:

Electronic components are assembled Program components are assembled

together to produce complete devices: together to produce software applications:

 Chapter 10: Object oriented programming 251

Think now about the purpose of an electronic component - for example a memory chip

for a computer:

To understand how the chip forms part of the overall computer system, we need to

know:

• its properties - a description of its physical size and position on the circuit board, the

memory capacity, and the data currently stored in it.

• the methods by which it carries out actions or communicates with the rest of the

computer - in this case, the input and output of data via the metal pins.

In Object Oriented Programming, the objects making up the program also have

properties and methods:

Every object has:

 properties, which describe the object.

 {For a Button, these include: width, height, the caption displayed, the position on

 the Form, and whether or not it is visible.}

 methods, which carry out actions or communicate with the rest of the program.

{For example: an event handling procedure to carry out some data processing

each time the button is clicked.}

In addition to the component objects already available, Java also allows us to add our

own objects to a program. In the next section we will see how this is done in a simple

example program:

properties:
size of the chip, position
on the circuit board, data
stored in the chip

methods:
input and output of data by
means of the pin connections

properties:
size of the button, its position
on the screen

methods:
button click event handling
procedure

252 Java Programming for A-level Computer Science

A computer studies lecturer has a collection of 8 reference books which can be

borrowed by students. The lecturer requires a computer program to record the

names of the borrowers when the books are out on loan.

Begin the project in the standard way. Close all previous projects, then set up a New Project. Give

this the name library, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the library project, and select New / JFrame

Form. Give the Class Name as library, and the Package as libraryPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view.

Add a Table component to the form. Rename this as tblBooklist.

Go to the Properties window for the table and locate the model property. Click in the right column

to open the editing window. Set the number of Rows to 8, and the number of Columns to 3.

Give titles and data types for the columns:

 Book number Integer

 Book title String

 Status String

Remove the ticks from the editable column, as shown below.

 Chapter 10: Object oriented programming 253

Click OK to return to the form design screen. Check that the table headings are displayed correctly.

Add:

 a label "Book number", with a spinner alongside called spinBooknumber.

 a label "Borrower", with a text field alongside called txtBorrower.

 a button with the caption "Borrow". Rename this as btnBorrow.

 a button with the caption "Return". Rename this as btnReturn.

254 Java Programming for A-level Computer Science

We will use an object oriented approach for this program. The objects used can be any

kind of building blocks which help towards a solution of the programming problem, so in

this case we will choose to set up 'book' objects.

We begin by considering what properties and methods the book objects should have.

 BOOK

The properties are shown inside the box representing the object. They are private to the

object and are not openly available to other parts of the program.

The methods are shown as rectangles cutting through the edge of the object box. The

methods provide gateways for the object to communicate with the outside program, and

allow the property values to be read or updated.

For our simple library program, the important properties of a book are:

• The book number and title, which allow us to identify a particular book.

• Whether or not the book has been borrowed.

• If the book is out on loan, the name of the borrower.

To operate the program we will need methods which can:

• Record a book being borrowed, by setting borrowed to true and entering the name of

the borrower.

• Record a book being returned, by setting borrowed to false.

• Display a list of the books, showing which are out on loan and the names of the

borrowers .

The first step in creating an object is to set up a class file. Right-click on libraryPackage in the

Projects window, then select New / Java Class.

booknumber : integer

borrowed : boolean

borrower : string

title : string

borrow()

return()

properties

methods

 Chapter 10: Object oriented programming 255

Give the class Name as Book, leaving the Package name as libraryPackage:

Open the Source code window for the Book class. We will define the properties needed

for a book object.

public class Book {

 private int number;
 private String title;
 private Boolean borrowed;
 private String borrower;

}

To understand the next step, it is important to remember that a program may require

many instances of a particular type of object. In this case, the library contains eight

books, so eight book objects will be required to keep records of the borrowers.

A class acts as a machine for creating and maintaining objects of a particular type. If we

wish, we can specify how many objects will be created in the class by setting up an array.

Add the line:

public class Book {
 private int number;
 private String title;
 private Boolean borrowed;
 private String borrower;

 public static Book[] bookObject=new Book[9];

}

Surprisingly, no objects actually exist yet! When the program runs, we will ask for each book object

to be created when it is required. The computer will then look for available space in the electronic

RAM memory to store the object, and record the memory address of the object in the bookObject

array. Until this is done, the array elements will contain null values.

256 Java Programming for A-level Computer Science

 bookObject array …provides pointers to … the book objects created in the RAM memory

Notice that there may be many book objects. These are referred to as dynamic data structures.

Objects do not exist before the program runs, but are created when required whilst the program is

running.

Notice also that there is only one bookObject array. This is a static data structure, as it is set up

permanently before the program runs.

Java assumes that properties and methods belong to individual objects, so are dynamic. If, we

wish to set up static variables, with only one copy applying to the whole class, we must include the

keyword 'static' in the definition:

 public static Book[] bookObject=new Book[9];

We now need a way to produce the individual book objects. This is done by a 'constructor' method

which is always given the same name as the overall class, in this case 'Book()'. When the

constructor method is called, a book object is set up in the RAM memory, a pointer is added to the

bookObject array, and values can be assigned to the private properties inside the book object.

0 null

1 pointer

2 pointer

3 pointer

4 null

5 null

6 null

7 null

8 null

book object 1

book object 2

book object 3

book object

bookObject[] pointer array STATIC

DYNAMIC

BOOK CLASS

created before

the program runs

created while the

program is running

 Chapter 10: Object oriented programming 257

Add the constructor method:

public class Book {
 private int number;
 private String title;
 private Boolean borrowed;
 private String borrower;
 private static Book[] bookObject=new Book[9];

 public Book(int bookNumber, String bookTitle)
 {
 number = bookNumber;
 title = bookTitle;
 borrowed=false;
 }

}

Now let's create some book objects. Return to the library.java program code page. We will add

lines of code to carry out several tasks:

 Include two Java modules which will be needed for editing the table.

 Set up a loadBooks() method. This contains a loop which will repeat eight times, creating

each of the book objects. We begin by choosing the book title, then pass this to the

constructor method in the book class. The book title will be used to set the 'title' property

of the new object.

 Finally, a line of code is added to the library() method to call loadBooks().

package libraryPackage;

import javax.swing.JTable;
import javax.swing.table.TableColumn;

public class library extends javax.swing.JFrame

 public library() {
 initComponents();

 loadBooks();

 }

 private void loadBooks()
 {
 String bookTitle="";
 for (int i=1;i<=8;i++)
 {
 if(i == 1) bookTitle="HTML for web pages";
 if(i == 2) bookTitle="Windows 8 reference";
 if(i == 3) bookTitle="Microsoft Office 2013";
 if(i == 4) bookTitle="3D graphics techniques";
 if(i == 5) bookTitle="Object Oriented C++ programming";
 if(i == 6) bookTitle="Using Java";
 if(i == 7) bookTitle="SQL Databases";
 if(i == 8) bookTitle="Assembly language for electronics";
 Book.bookObject[i]= new Book(i,bookTitle);
 }
 }

258 Java Programming for A-level Computer Science

We now need to display the book information in the table. However, the properties of each book
have been deliberately been made private, to hide these from the rest of the program. This is to
prevent the data being accidentally altered, leading to program errors. In order to access particular
property values, we must provide public methods in the Book class.

Return to the Book.java class file and add methods which we can use to obtain the title of a book,
whether it is currently on loan and, if so, the name of the borrower.

 public Book(int bookNumber, String bookTitle)
 {
 number = bookNumber;
 title = bookTitle;
 borrowed=false;
 }

 public String getTitle()
 {
 return title;
 }

 public Boolean getBorrowed()
 {
 return borrowed;
 }

 public String getBorrower()
 {
 return borrower;
 }

}

We can now move back to the library.java program code screen and add a method to display the

book data in the table. Add this after the loadBooks() method. Please note that lines beginning

 tblBooklist.getModel().setValueAt(" …

should be entered as single lines of code with no line breaks.

 Book.bookObject[i]= new Book(i,bookTitle);
 }
 }

 private void displayBooks()
 {
 for (int i=1;i<=8;i++)
 {
 tblBooklist.getModel().setValueAt(i,i-1,0);
 tblBooklist.getModel().setValueAt(Book.bookObject[i].getTitle(),i-1,1);
 if (Book.bookObject[i].getBorrowed()==false)
 {
 tblBooklist.getModel().setValueAt("not on loan",i-1,2);
 }
 else
 {
 tblBooklist.getModel().setValueAt("on loan to "+
 Book.bookObject[i].getBorrower(),i-1,2);
 }
 }
 }

 Chapter 10: Object oriented programming 259

Add a line to the library() method to call displayBooks():

 public library() {
 initComponents();
 loadBooks();

 displayBooks();

 }

Run the program. The list of books should be displayed, with each shown as "not on loan".

The data is correct, but the layout of the table is not very satisfactory. The Book number column is

wider than it ought to be, whilst the Book title column may need to be wider if any books with

longer titles were added to the library.

Changing the widths of columns in a Java NetBeans program is not straightforward, but we can take

the opportunity to set up a standard module called setColumnWidth() to carry out this task. This

could then be reused in other programs when necessary. Add lines of code to the library() method

to call this:

 public library() {
 initComponents();

 int col[] = {80,250,200};
 setColumnWidth(col);

 loadBooks();
 displayBooks();
 }

 private void setColumnWidth(int[] width)
 {
 tblBooklist.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
 int count=tblBooklist.getColumnCount()-1;
 for (int i=0; i<=count;i++)
 {
 TableColumn column = tblBooklist.getColumnModel().getColumn(i);
 column.setPreferredWidth(width[i]);
 }
 }

260 Java Programming for A-level Computer Science

We have set up an array col[] to contain the required widths for the columns of the table: Book

number will be 80 pixels, Book title is 250 pixels, and Status is 200 pixels. This data is then passed

to the setColumnWidth() method.

SetColumnWidth() begins by turning off the automatic column size function, which by default

makes each column the same width. We then use a loop to set the preferredWidth for each of the

columns to the values specified in our col[] array.

Re-run the program and check that the layout of the table is now more satisfactory. You may need

to change the width or height of the table so that all the data is visible.

We will now turn our attention to the borrowing of a book. This will require two properties of the

book object to be updated:

 the Boolean variable borrowed must be set to true,

 the name of the borrower must be recorded as the String variable borrower.

Go to the Book.java class file and add a borrowBook() method to carry out these changes.

 public Book(int bookNumber, String bookTitle)
 {
 number = bookNumber;
 title = bookTitle;
 borrowed=false;
 }

 public void borrowBook(String borrowerName)
 {
 borrowed=true;
 borrower=borrowerName;
 }

 Chapter 10: Object oriented programming 261

Return to the library.java screen and use the Design tab to change to the form layout view. Double

click the Borrow button to create a method.

We will now add lines of code to carry out a series of actions:

 The number of the book is obtained from the spinBooknumber component.

 The name of the borrower is obtained from the txtBorrower text field.

 A presence check is carried out to ensure that a borrower name had been entered.

 The borrowBook() method is called to update the properties of the book object, and the

table is redisplayed.

 Finally, the txtBorrower text field is cleared.

 private void btnBorrowActionPerformed(java.awt.event.ActionEvent evt) {

 int n=(int) spinBooknumber.getValue();
 String borrower=txtBorrower.getText();
 if (borrower.length()>0)
 {
 Book.bookObject[n].borrowBook(borrower);
 displayBooks();
 }
 txtBorrower.setText("");

 }

Run the program. Check that the books can be shown as on loan to students.

262 Java Programming for A-level Computer Science

The next function required is to record the return of a book. This will again require two properties of

the book object to be updated:

 the Boolean variable borrowed must be set to false,

 the name of the borrower must be cleared from the String variable borrower.

Go to the Book.java class file and add a returnBook() method to carry out these changes.

 public void borrowBook(String borrowerName)
 {
 borrowed=true;
 borrower=borrowerName;
 }

 public void returnBook()
 {
 borrowed=false;
 borrower="";
 }

Return to the library.java screen and use the Design tab to move to the form layout view. Double

click the Return button to create a method.

Add lines of code which will obtain the number of the book from the spinBooknumber component,

then call the returnBook() method to update the properties of the book object. The table is then re-

displayed.

 private void btnReturnActionPerformed(java.awt.event.ActionEvent evt) {

 int n=(int) spinBooknumber.getValue();
 Book.bookObject[n].returnBook();
 displayBooks();

 }

Run the program. Enter loans of books to various students, then check that books can be shown as

returned.

 Chapter 10: Object oriented programming 263

This completes the library program. Before leaving this project, we will look at a particular way of

documenting object oriented programs called a class diagram. This is one of the main components

of Unified Modelling Language, which is a system of standard diagrams used in program design.

 Book

- number integer

- title string

- borrowed boolean

- borrower string

+ bookObject array of Book

+ Book()

+ borrowBook()

+ returnBook()

+ getTitle()

+ getBorrowed()

+ getBorrower()

264 Java Programming for A-level Computer Science

The class diagram is a box divided into three sections. The top section contains the class name.

Below this is a section which lists the properties of the class. The final section lists the methods.

Minus (-) symbols indicate private properties, unavailable except through public methods. Plus (+)

symbols indicate the public methods, and also the bookObject array which is used to locate a

particular instance of a book object in the computer memory.

As we have seen, the bookObject array and the public methods are used together when carrying out

operations with the book objects. For example, calling

 Book.bookObject[5].returnBook()

would locate book object 5 and use the returnBook() method to update the private properties to

record that the book has been returned.

For our second program using object oriented methods, we will develop a program

involving graphics:

A theatre requires a computer program to record the seat bookings for a play. The

program should produce a graphical seating plan of the theatre, with seats shown

in green if available or red if booked. The theatre has 8 rows each containing 12

seats. Initially, all the seats are un-booked.

It should be possible to enter the number of the row and the quantity of seats

required, and the computer will make the booking if sufficient seats are available.

(To keep the program as simple as possible, we will not worry about cancellation of

bookings.)

This program will be based on a set of Seat objects. We can begin the design process by
developing a class diagram.

For each seat, it will be necessary to record its row number (between 1 and 8) and position
within the row (between 1 and 12). We should also record whether it is booked. These data
items will form the private properties of the object.

When the program runs, we must create the seat objects using a constructor method. We will
also need methods to check whether a particular seat is booked, and to make a booking for a
seat. These methods will be public, so they can be accessed from other parts of the program.

 Seat

- seatnumber integer

- rownumber string

- booked boolean

+ seatObject array of Seat

+ Seat()

+ getBooked()

+ bookSeat()

 Chapter 10: Object oriented programming 265

As in the library project earlier, we will set up an array of pointers to the Seat objects we
create. For the library books, only a simple sequence of array elements was needed:

This is known as a one-dimensional array. It was created using the programming command:

 bookObject = new Book[9]

The theatre program is a more complicated, as the seats are arranged in a number of rows:

This requires a two-dimensional array, with each seat identified by both a position within the
row and a row number. For example:

 seatObject[3][5]

will represent the third seat in row 5 of the theatre. The array can be created with the
command:

 seatObject = new Seat[13][9]

The numbering of array elements always begins with zero, so this definition will allow for seats
numbered 0-12 and rows numbered 0-8. However, we will not actually make use of the zero
seat numbers or row numbers in our program.

Begin the project in the standard way. Close all previous projects, then set up a New Project. Give

this the name theatre, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the theatre project, and select New / JFrame

Form. Give the Class Name as theatre, and the Package as theatrePackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

book 1 book 2 book 3 book 4 book 5 …………

 seat 1 seat 2 seat 3 seat 4 seat 5 …………

row 1

row 2

row 3

row 4

row 5

………

266 Java Programming for A-level Computer Science

We will begin by setting up the Seat class file. Right-click on theatrePackage in the Projects window,

then select New / Java Class.

Give the class Name as Seat, leaving the Package name as theatrePackage:

Open the Source code window for the Seat class. We will define the properties and constructor

method for the class.

package theaterPackage;

public class Seat {

 private int seatnumber;
 private int rownumber;
 private Boolean booked;
 public static Seat[][] seatObject=new Seat[13][9];

 Seat(int number, int row)
 {
 seatnumber = number;
 rownumber = row;
 booked=false;
 }

Select the tab at the top of the code window to return to the theatre.java page. Add Java modules

which will be needed to produce the graphics for the theatre seat plan, and to display a message

box when required.

package theaterPackage;

import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics2D;
import javax.swing.JOptionPane;

public class theatre extends javax.swing.JFrame {

 public theatre() {
 initComponents();
 }

 Chapter 10: Object oriented programming 267

We will now produce a loadSeats() method to create the eight rows of twelve seats for the
theatre. Add a line of code to call loadSeats() from the theatre() method, which is the first to
run when the program begins.

public class theatre extends javax.swing.JFrame {

 public theatre() {
 initComponents();

 loadSeats();

 }

 private void loadSeats()
 {
 for (int rownumber=1; rownumber<=8; rownumber++)
 {
 for (int i=1; i<=12; i++)
 {
 Seat.seatObject[i][rownumber]= new Seat(i,rownumber);
 }
 }
 }

We can now turn our attention to the user interface. Use the Design tab to move to the form

layout view.

Add a panel component and rename this as pnlTheatreplan.

Go to the Properties window and locate the background property. Click in the right column and

select White from the drop down list.

Now locate the preferredSize property and set this to [640, 400]

268 Java Programming for A-level Computer Science

Beneath the panel, add:

 A label 'Row', with a text field alongside with the name txtRowWanted.

 A label 'Number of seats', with a text field alongside with the name txtSeatsWanted.

 A button with the caption 'Book seats' and the name btnBookseats.

We will now start to produce the theatre seat plan graphics.

Select the panel and open the Events list in the Properties window. Locate the mouseEntered

event and select pnlTheatreplanMouseEntered from the drop down list.

Add a line of code to call a drawTheatre() method.

 private void pnlTheatreplanMouseEntered(java.awt.event.MouseEvent evt) {

 drawTheatre();

 }

Immediately after the MouseEntered method, start drawTheatre() by creating a rectangle to

represent the theatre stage.

 private void drawTheatre()

 {

 Graphics2D g=(Graphics2D) pnlTheatreplan.getGraphics();

 Font sanSerifFont = new Font("SanSerif", Font.PLAIN, 14);

 g.setFont(sanSerifFont);

 g.setColor(Color.black);

 g.drawRect(100,20,400,40);

 g.drawString("stage",280,44);

 }

 Chapter 10: Object oriented programming 269

Run the program. Move the mouse into the white panel area. A rectangle and caption should

appear to indicate the stage. You may need to resize the panel to make the image visible.

Close the program window and return to the drawTheatre() method on the code page.

Add lines of code:

 Two nested loops create each row of seats in turn, with the set of twelve seats displayed

along the row. Each seat is a green square with a width of 20 pixels and a height of 20

pixels.

 The position of each seat is calculated from the seat position and row number. 30 pixels are

added horizontally for each seat position along a row. 30 pixels are added vertically for each

row of seats down the screen.

 A caption is created for each row, using the rownumber variable.

 private void drawTheatre()

 {

 Graphics2D g=(Graphics2D) pnlTheatreplan.getGraphics();

 Font sanSerifFont = new Font("SanSerif", Font.PLAIN, 14);

 g.setFont(sanSerifFont);

 g.setColor(Color.black);

 g.drawRect(100,20,400,40);

 g.drawString("stage",280,44);

 int xpos;

 int ypos;

 int rownumber;

 String textline;

 for (rownumber=1; rownumber<=8; rownumber++)

 {

 textline = "Row "+ rownumber;

 ypos = 88 + rownumber*30;

 g.drawString(textline,50,ypos);

 for (int i=1; i<=12; i++)

 {

 xpos = 100 + i*30;

 ypos = 70 + rownumber*30;

 g.setColor(Color.green);

 g.fillRect(xpos,ypos,20,20);

 g.setColor(Color.black);

 g.drawRect(xpos,ypos,20,20);

 }

 }

 }

270 Java Programming for A-level Computer Science

Run the program. Move the mouse onto the panel. Eight rows of seats should be displayed.

Close the program window and return to the NetBeans editing screen.

We will now work on the booking procedure. However, we must first add methods to the Seat class.

Use the tab at the top of the program code window to move to the Seat.java page.

Add two methods:

 getBooked() which will allow access to the booked property of a seat object, to determine

whether the seat is already booked.

 bookSeat(), which will set the booked property of a seat object to true.

 Seat(int number, int row)
 {
 seatnumber = number;
 rownumber = row;
 booked=false;
 }

 public Boolean getBooked()
 {
 return booked;
 }

 public void bookSeat()
 {
 booked=true;
 }

Use the tab to move to the theatre.java page, then locate the drawTheatre() method.

 Chapter 10: Object oriented programming 271

The program should use colour coding to indicate which seats are booked. Add lines of code to the

drawTheatre() method which will:

 use the getBooked() method in the Seat class to determine whether the seat is booked,

 set the display colour to red for booked seats, or green for un-booked seats.

 int xpos;
 int ypos;
 int rownumber;
 String textline;
 for (rownumber=1;rownumber<=8;rownumber++)
 {
 textline="Row "+rownumber;
 ypos=88+rownumber*30;
 g.drawString(textline,50,ypos);

 Boolean booked;

 for (int i=1; i<=12; i++)
 {
 xpos=100+i*30;
 ypos=70+rownumber*30;

 booked=Seat.seatObject[i][rownumber].getBooked();
 if (booked==true)
 {
 g.setColor(Color.red);
 }
 else
 {

 g.setColor(Color.green);

 }

 g.fillRect(xpos,ypos,20,20);
 g.setColor(Color.black);
 g.drawRect(xpos,ypos,20,20);
 }
 }
 }

Test the program by adding a line to the theatre() method.

 public theatre() {
 initComponents();
 loadSeats();

 Seat.seatObject[3][5].bookSeat();

 }

We have set seat three in row five to be booked. Run the program and check that this seat now

appears in red.

272 Java Programming for A-level Computer Science

Close the program window to return to the program code page. Remove the test line:

 Seat.seatObject[3][5].bookSeat();

from the theatre() method.

Use the Design tab to move to the form layout view. Double click the 'Book seats' button to create a

method. The program allows the user to choose a row, then specify the number of seats that they

wish to book in that row. Add lines of code to collect this information from the text fields

txtRowWanted and txtSeatsWanted.

private void btnBookseatsActionPerformed(java.awt.event.ActionEvent evt) {

 int seatsWanted;
 int rowWanted;
 seatsWanted=Integer.parseInt(txtSeatsWanted.getText());
 rowWanted=Integer.parseInt(txtRowWanted.getText());

}

We will now carry out a range check to ensure that the row wanted is in the valid range from 1 to 8.

If so, the program continues with a loop that checks each of the seat objects on the selected row. A

count is made of the number of un-booked seats.

 private void btnBookseatsActionPerformed(java.awt.event.ActionEvent evt) {
 int seatsWanted;
 int rowWanted;
 seatsWanted=Integer.parseInt(txtSeatsWanted.getText());
 rowWanted=Integer.parseInt(txtRowWanted.getText());

 if (rowWanted>=1 && rowWanted<=8)
 {
 Boolean booked;
 int count=0;
 for (int i=1; i<=12; i++)
 {
 booked=Seat.seatObject[i][rowWanted].getBooked();
 if(booked==false)
 {
 count++;
 }
 }

 }

 }

 Chapter 10: Object oriented programming 273

We now know the row in which the user wishes to book seats, and the number of available seats on

that row. The next step is to check whether the number of available seats is sufficient for the

booking. If so, the required number of seats can be booked; if not, then a warning message will be

displayed.

To book seats, a loop checks each seat object in turn along the row. If the seat is available, it will be

booked and the count increased by one. The loop continues until the required number of seats have

been booked.

Add lines of code to the 'Book seats' button click method. Please note that the

showMessageDialog(….) instruction should be entered as a single line of code without a line break.

 for (int i=1; i<=12; i++)

 {

 booked=Seat.seatObject[i][rowWanted].getBooked();

 if(booked==false)

 {

 count++;

 }

 }

 if (count>=seatsWanted)

 {

 int i=0;

 count=0;

 while(count<seatsWanted)

 {

 i++;

 if(Seat.seatObject[i][rowWanted].getBooked()==false)

 {

 Seat.seatObject[i][rowWanted].bookSeat();

 count++;

 }

 }

 }

 else

 {

 JOptionPane.showMessageDialog(theatre.this,

 "Sorry, not enough seats available");

 }

 }

 }

Add lines of code to clear the text fields. Call the drawTheatre() method to update the screen

display to show seats which have just been booked.

 {

 JoptionPane.showMessageDialog(theatre.this,

 "Sorry, not enough seats available");

 }

 }

 txtSeatsWanted.setText("");

 txtRowWanted.setText("");

 drawTheatre();

 }

274 Java Programming for A-level Computer Science

Run the program. Choose rows and numbers of seats required, then check that seats are shown

correctly when booked. Check also that the warning message is displayed if sufficient seats are not

available in the selected row.

Close the program window and return to the NetBeans editing screen. Use the Design tab to move
to the form layout view.

One final improvement to the program is to output a list of the seats allocated for each booking.
Drag the form wider if necessary, then add a label 'Tickets issued', and a text area with the name
txtTicketlist.

 Chapter 10: Object oriented programming 275

Double click the 'Book seats' button to return to the button click method. Add lines of code as
shown below:

 if (count>=seatsWanted)

 {

 int i=0;

 count=0;

 String s="";

 while(count<seatsWanted)

 {

 i++;

 if(Seat.seatObject[i][rowWanted].getBooked()==false)

 {

 Seat.seatObject[i][rowWanted].bookSeat();

 count++;

 s +="Row "+rowWanted;

 s+=" seat "+i+"\n";

 }

 }

 txtTicketlist.setText(s);

 }

 else

 {

 JOptionPane.showMessageDialog(theatre.this,

 "Sorry, not enough seats available");

 }

Run the program. Check that the seats allocated for each booking are correctly listed in the text
area.

